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Boundary Condition Expansion of Basis
Functions Method Implemented by Fast

Fourier Transform Algorithms

LJUBI~A STANKOVIC AND SVETOZAR JOVICEVId

~Mract —This paper presentsa new approachto boundaryvalue prob-
lems. It is basedon boundarycondition expansion on basis functions. The

expansion coefficients are determined using the fast Fourier transform of

basis functions on the boundary. This approach is compared with the

least-squares boundary residuaf method (LSBRM). It is shown that this

approach results in a considerable reduction in computation time in
comparison with the original LSBRM. The procedure is successfully
demonstratedon diffraction and eigenvahreproblems.

I. INTRODUCTION

M ETHODS of modal expansion have frequently been

used in solving electromagnetic boundary value

problems. Among them the point matching method [1] is

one of the oldest and simplest mathematical methods of

determining expansion coefficients. It has been used in

solving eigenvalue problems [2], [3] and in the solution of

the problems of scattering from a periodic surface [4], [5].

The least-squares boundary residual method (LSBRM), an

improved point- matching method, has been introduced in

scattering problems [6] and has also been successfully used

both in solving eigenvalue problems and dielectric wave-

guides [7], [8] and in acoustic wave propagation along

periodic gratings [9].

The applicability of the LSBRM method has been

demonstrated in electrostatic and eddy currents and also

in the treatment of nonharmonic field problems [10], [11].

The method has made possible a very effective analysis of

waveguides with complex cross sections [12]. In all of these

problems the least-squares boundary residual method has

been found to be very accurate and convenient. It is

therefore recommended not only in the specific area of

microwave techniques, but also as a reliable numerical

procedure of more general interest in the solution of

boundary value problems. Although the boundary condi-
tions can be satisfied on certain parts of the boundary

through an appropriate choice of basis functions, the nu-

merical integration of basis function products along the
rest of the boundary is a formidable procedure. Efforts in

reducing the computation time seem to be worthwhile. The

transformation of basis functions into rectangul?.r pulse

Manuscript received May 28, 1988; revised September 22, 1989.

The authors are with the Electrical Engineering Department, Univer-

sity of Titograd, 81000 Titograd, Yugoslavia.

IEEE Log Number 8932991.

functions [13] is a possible technique. This paper presents

an approach to solving boundary value problems using the

fast Fourier transforms (FFT) of basis functions along the

boundary, resulting in a reduction in computation time.

II. THEORY

Let us consider a two-dimensional equation of the

Helmholtz type:

d2u J 2U

ax2 + dyz
+k2u=0 (1)

with boundary condition along the line L = L1 U Lz de-

fined by the function 1(x). The boundary condition on L1

is of the Dirichlet type and on Lz of the Neumann type:

{

U(x,l(x)) on L1

g(x) = du(x,l(x)) (2)

an
on L2.

A solution to (1) with boundary condition (2) will be

sought as a sum of basis functions rp~(x, y) of (l):

U(x, y) = f Cmrpm(x, y). (3)

Let us define the functions ~~(x) as

[

rpm(x,l(x)) on L1

fro(x) = k ihpm(x,l(x)) (4)

n
i3n

on L2

taking k. as weighting factor for Neumann’s boundary

condition. If functions f~(x ) can be developed in Fourier

series, then we can express them in the form

N/2 – 1

fro(x) = ~ Fm(v)eJ(’”/a)”x (5)
v= —N/2

where a denotes the length of periodicity along the x axis.

If the functions f~(x) are band-limited, we can obtain the

coefficients Fm( v) from the samples of functions ~~(x ) at

the points x = an/N using the FFT algorithms (see [14]).

Therefore,

F~(v)=FFT{~n(n)} (6)
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where ~~(n) = fm(~)lx=(a/~)n denotes the n th sample of

the m th basis function on the boundary.

It should be pointed out that in many electromagnetic

problems only one of the types of boundary conditions

given by (2) is prescribed along the boundary line. How-

ever, in the problems where one of the types of boundary

conditions is given on one part of the boundary line L and

the other type on the remaining part of the boundary,

functions jw(x) and g(x) may have a discontinuity of the

first kind. But even this does not affect the possibility of

developing functions in Fourier series, although it does

affect the convergence. Such problems were analyzed in

[24].

The deviation from the boundary value is

e(x)= f cmfm(x,l(x))– g(x). (7)
~=1

With Fg(v) denoting the FFT of the boundary condition:

Fg(v)=FFT{g(n)} (8)

and after interchanging the order of summation, the error

in any point can be written as

Now, if M = N then the unknown coefficients cm can be

found by taking all amplitudes to be equal to zero, i.e.,

from the system

Fl(– M/2) . . .

F1(M;2–1) ““”

FM( – ikf/2) cl

F~(M/2 – 1) CM

F~( – M/2)

. (lo)

F~(M/2–1)

Accepting that M = N, i.e., that the number of expan-

sion coefficients is equal to the number of basis function

samples, we actually come to a variant of the collocation

method. However, this procedure has an advantage over

the standard collocation procedure in that the values of

coefficients F~( v) differ more from one another than the

values of the basis functions themselves. Therefore matrix

(10) is not ill-conditioned. Still, the size of system (10) acts

as a serious disadvantage, as is the case in the original

procedure of the collocation method. However, not all N

samples need to be taken, only the first M (M< N)

harmonics, i.e., the number of modes in (3), so that we

obtain a very much reduced system of order M.

In [15] we minimized the mean of the absolute square

value of the error (7), which, knowing that it was equal to

the sum of the mean square values of all harmonics:

N/2–l M

l~lz = ~ [x WV)+’’(V)1
v=– N/2[m=l “J

rM 1

“1E C,;F2+(V)-FX”(V)I(11)
Lm=I J

gave a system with unknown expansion coefficients:

where Am, and B~ denote

N/2 – 1

cl B1

.—.—

CM B;

N/2 – 1

(12)

(13)

In treating both procedures (lo) and (12) as variants of

the general moment method (see [23]), a correspondence is

found. The requirements e(x) = O can be written in the

form

f cmjm(x) =:g(x). (14)
~=1

If we take, as a weighting function, the complex conju-

gate of only one basis function’s harmonic, i.e.,

F;(v) exp( – 2mxv/a), from (14) after dividing by F;(v)

and integrating within the interval (O, a), we get system

(lo).

On the other hand, if we take the complex conjugate of

the basis function along the boundary, i.e., fl* (x )1, as a

weighting function, we obtain the following system:

5 L(kf,”)=(g,f,’)! 1=1,2,... , M (15)
~=1

where ( fm,fl* ) is a scalar product along the inte@(O, a ).

System (15) is equivalent to the requirement Ie(X)12= O.

By introducing the FFT of functions ~~(x), fl(x ), and

g(x) into (15) and with the orthogonality of harmotics, we

obtain system (12).

Thus, we can conclude that system (12) is more general

since it includes the complete Fourier transform (FT) of

the weighting functions and that (10) is a special case. By

including only one harmonic and assuming the same order,

system (12) will produce greater accuracy than (10) but

with a greater computation time.

In order to achieve more accurate results the integration

interval in (15) should be divided into a greater number of

subintervals; i.e., a greater number of function sa~mples

and FFT harmonics should be taken. However, in sum

(13) it is possible to take only IVl most significant modes.

In accordance with our previous discussion this means to

take as a weighting function the Nl harmonics of the basis
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Fig. 1. The grating of (a) sinusoidal, (b) semicircular, and (c) inverse

profiles.

functions grouped around the most significant harmonic.

In that case the NI members of sum (13) are grouped

around the frequency on which the product F~(v)Fl* (v)

has the maximum value, which is explained in more detail

in [10]. In the examples treated in this paper the determin-

ation of these frequencies is simple. If we take NI = O,

then we get variant (10). It appears that the convergence

regarding NI is very fast, so taking just a few of the

nearest harmonics we obtain results almost identical with

the results obtained when we take all N computed har-

monics.

In [15] we found the ratio between the computation

times of the original LSBRM and procedure (12) to be

log2 N
T=;+—

M
(16)

where M is the number of modes (i.e., expansion coeffi-

cients), N is the number of function samples (FFT har-

monics), and NI is the number of the most significant

modes of sum (13).

In system (10) the summation applied in (13) is excluded

(i.e., NI = O) so the time ratio is now

logz N
TO=—

M“
(17)

111. APPLICATION TO DIFFRACTION PROBLEMS

The applicability of this method using different numbers

of harmonics (i.e., Nl) will be demonstrated on electro-
magnetic wave diffraction from periodic gratings of perfect

conductivity. We shall consider the grating of the sinu-

soidal profile (Fig. l(a)) which has very often been used as

a testing profile [6], [16], [17] and also of the semicircular

profile (Fig. l(b) and (c)) used in [18].

As usual, we are assuming an incident plane wave of

normal polarization:

E, = Eoe-Jk(&O (18)

with

y=sin9 8=cose

k = 27r/A Eo=l. (19)

Rm /’
,

,/

R
+1.. -“’”%: /-”’>’

--..;><<: ~+
-“>;-<..,--

\-,/” R_l ‘~.

/

.1:- . . ..

,,. .

‘------
-’..--.:.>..... .

/’ ‘-3 -.y -:-::..
0 90Q

Fig. 2. The reflection coefficients in sinusoidal gratinx: h/A= 0.5:

d/A =2.

TABLE I
ENERGY BALANCE FOR SINUSOIDAL GRATING

diffraction from sinus.oidal q~at,ng

dlA.=2 . hl i=O .5 M=15

N,=31 N,=3 Ni=o
, -.

angle energy sum ang le energy sum angle enevgy sum

o 0.?977929 o 1.000010 0 0.9981373

10 0. 7?99952 10 1.000241 10 1.0007950

20 0. 9?99846 20 1.000772 20 0.’?956011

30 0.9999901 30 1.000671 30 1.0000000

40 0.9’797971 40 1.000107 40 1. 0003B40

50 0. ?W5W33 50 1.000088 50 1.0018050

60 0.9999!391 60 1.000021 &o 1.0022290

70 0. 7?99902 70 1.000407 70 1.0003760

so 0. 999?973 80 1.000104 80 0.9978624

e9 0.999? 979 89 1. 00002? 87 1.0005470
———

The reflected field is represented as a sum of propagat-

ing and attenuated waves:

M

E, = ~ Eme-Jkb’.x+8mz) (20)
~=.J,J

with

y.= sin6’ + mA/d 13m={l-y:.

The unknown 2M + 1 coefficients EM are determined by

the previously described procedure satisfying the boundary

condition on the grating wall:

E,= E,. (21)

Thus, we have

~~(x) = ~-~k(w+o~l(x))

g(x) = – e-lk(Yx+al(x)). (22)

Having found field amplitudes Em we plotted the reflec-

tion coefficients against the incident angle:

Rm=lEm12; . (23)

For a sinusoidal grating the reflection coefficients are

shown in Fig. 2.

As an accuracy test energy conservation was employed:

The summation went over those values

8~ was real. As can be seen from Table I

imposed by (23) was rigorously satisfied.

(24)

of m for which

the requirement
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0 90 Q

Fig. 3. The reflection coefficients in the case of semicircular grating:

h/A =0.5; d/A=2.

Fig. 4. The reflection coefficients in the case of inverse grating (h/X=
0.5; d/A = 2).

Here the error is less than 0.5 percent for IVl = O and

N= 64. For NI = 31 the error is even less than 0.002

percent. In the former, when NI = O, the time ratio is 0.193

and for NI = 31 it is 0.678. So, by using system (10) we

obtain the coefficients 5.18 times faster than by using the

original LSBRM method. As can be seen, if we take just

NI = 3 then the value of error is very close to that in

NI = 31. However, when NI = 3, the computation is four

times faster than in the original LSBRM procedure.

The fulfillment of the boundary condition (eq. (21)) can

be used as another accuracy check. Although it is not

presented here, this check has been performed and it has

proved the high accuracy of the results.

We solved the diffraction problem of semicircular (Fig.

l(b)) and inverse (Fig. l(c)) gratings in the same way.

Incident wave and boundary data are the same as in the

previous example. The reflection coefficients are shown in

Figs. 3 and 4.

The energy balance for a semicircular grating is given in

Table II. The error is less than 2 percent for a semicircular

grating with NI = 5 and even less than 0.3 percent with

NI = 31. This was achieved with M =15, that is, with the

31 modes in (20) and with 256 samples along the grating

wall, within the interval (O, d). Taking IVl = O we could not

get acceptable results for all angles of incidence, so they

are not given in Table II. The reason for this might be the

existence of sharp edges in this structure.

For N = 256, M = 31, and NI = 31 the time ratio of

performed calculations is 0.5, which means that the modi-

fied version of the LSBRM is approximately two times

faster than the original method. With iVl = 5, it is 3.5 times

faster.

TABLE I [

ENERGY BALANCE or SEMICIRCULAR GRATING

diffraction f rum

7

semi, rirculat- grating

d(?,=2. hlk=O. S m=15

N,=5 N,=31

angle energy sum angle energy sum

o 1. O0472EI0 o 1.0021250

10 0. 990!3099 10 1.0006920

20 0.9937392 20 0. ‘+97031O

30 1.0101570 30 0. ?9757e6

40 0.9?55971 40 1.0004160

50 0. 9E27E193 50 1.0007570

60 0. 9S63375 60 1.0020270

70 1.0016860 70 L .0028000

80 0. 99290s3 eo 1.0022110

e9 1.0012530 89 1.0005470

Y

I
I

Fig. 5. A cross section of elliptical ancl ridged elliptical waveguides.

As was expected, in each of these cases rather pro-

nounced Wood’s anomalies were found at an angle of

incidence of d = 30”. The reason for thlis is that a double

grazing occurs ( Iyml = 1), the grazing orders being – 3 and

+1. An especially strong coupling is, among – 2 and O

orders and, since – 2 is a backscattering wave, it suffers

the strongest resonant effect, as was explained in detail in

[19].

IV. THE EIGENVALUE PROIBLEMS

As an illustration of the applicability of the suggested

method in solving eigenvalue problems, we shall consider

ridged elliptical waveguides (Fig. 5) witlh H wave.

Elliptical waveguides are often taken as a reference

when comparing the numerical methods with analytical

results [20], [21]. Assuming that the volume is the same,

conventional elliptical waveguides, as is known [22], have a

lower attenuation factor than circular and rectangular ones.

We shall examine the characteristics of ridged elliptical

waveguides which, as will be shown, have a lower cutoff

‘frequency and a wider bandwidth but a greater attenuation

factor.

The differential equation for the longitudinal magnetic

field component U= HZ is the same as (1), and the bound-

ary condition on the waveguide walls is

8Hz
—=

i3n
o (25)

so system (12) becomes

All . . . Al~ cl

= o. (26)

A“Ml ‘“” A“ CMMM
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TABLE III
lNOWLIZED 131GENvALUEk\(2/f2)Of ~~1 MODE OF ELLIPTICAL AND

RIDGED ELLIPTICAL WAVEGUIDES ( a = 1, b = 0.6, M= 11, N= 64)

t ELLIPTIC?IL. RIDGED ELLIPTICAL

T=o .3 ==0.7 r=o .3 C=I).6

analytic * +* * . . * *+

1.868 1.868 1.868 1.676 1. 6?6 1.560 1.587

results obtained by: * — system (101 ** – system (15)

ln(e2)

Fig. 6. The behavior of e2 against k/(2/a) for ellipticrd waveguide

where a = 2 and b = 0.6.

We shall assume H= for the H~l mode to be

[1~,+ (2m-l)7r ‘=k,

y a
(27)

The superscript c indicates the Hll mode odd with respect

to the longer ellipse axis.

The nontriviality condition for system (26) requires

det llA~,[l = O (28)

where A~. = An.( k). For different values of the relative

eigenvalue k. = k/(2/a) we shall calculate det IIAti.ll. The

unknown eigenvalues are those values for which the deter-

minant reaches the minimum. However, as in [15], we

achieved better results by taking c1 = 1, finding the integral

of the absolute square error e, and then coefficients c from

(26). By changing the value of k,, we found the minimum

of e 2 and thus the eigenvalue we were seeking.

The eigenvalues for elliptical waveguides obtained by

systems (10) and (12) are compared with analytically ob-

tained eigenvalues in Table 111. The behavior of the abso-

lute square error integral using system (10) can be seen

from Fig. 6.

For the ridged elliptical waveguides (Fig. 5) we also used

the H= approximation given by (27). Again, applying pro-

cedure (10) and procedure (12), we found the eigenvalues

for two sets of ridge parameters. The results are given in

the middle and right-hand columns of Table III. For a

relatively shallow ridge the results are identical, but for a

deeper ridge a slight difference appears.

It is interesting to see the distribution of error e(x)

around the boundary curve of the cross section. This is

shown in Fig. 7 for systems (10) and (12). They are close,

but the peak value of error produced by system (10) is

greater. It is also greater along most of the boundary line.

~~
Fig. 7. Error along boundary line where a =2, b = 0.6, r = 0.3, and

c = 0.7.

TABLE IV

NORMALIZED EIGENVALm k/(2\a) of H~l, H~2 MODES OF THE

RIDGED ELLIPTICAL WAVEGUIDE (a = 1, b = 0.6) FOR

Hfl (M=ll, N=64); FOR H;2 (M= 21, N=128)

l–finalytic el llptic
2–Calcul. elliptic
3–Ridged

4–Semi elllptic

5–Ridged sem. elllptic

L.-LL.JA
1.0 5.0 f[ f

c

Fig. 8. Attenuation factor for H{l mode of elliptical (semlelliptical) and

ridged wavegtnde (with one and two ridges) with a =1, b = 0.6, c = 0.6,

and r = 0.3.

Therefore, using (10), we found eigenvalues for the H;l

and H;z modes taking

M 2mr
Hfz : %2= ~ cm COS — X COS kYy. (29)

m=l a

Superscript s indicates the Hll mode even with respect to

the longer ellipse axis.

The results are given in Table IV. For the elliptical

waveguides they are again compared with analytical re-

sults. The number of modes and samples is given below

the table.

Having found the coefficients cm, we can easily calculate

the attenuation factors from the formula

JR. lH,12dl
L

r

Wf~= R~= — (30)
2~lHT12ds ‘

(J

s

where all the other field components are derived from Hz
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in the usual-manner ( 11~ is the transversal cross-sectional

componen~ Ht is the tangential boundary line component).

They are given in Fig. 8, which also shows the analytically

obtained attenuation factor for the elliptical waveguide

(conductivity is taken to be u = 62.9106 [S/m]). As we

can see the difference is small.

All calculations in this paper were carried out on a

VAX = 11/780.

V. CONCLUSION

The original LSBRM was modified using FFT of the

basis and boundary condition functions along the bound-

ary. This approach led to numerical procedures that can be

treated as special cases of the general moment method

with FT of basis functions as weighting functions. Proce-

dures differ by the number of FT harmonics, which ranges

from complete FT to no more than one FT harmonic of

basis functions along the boundary. The first possibility is

equivalent to the requirement that the mean square abso-

lute error is minimum, while the second possibility actually

leads to an improved-collocation procedure.

In several diffraction and eigenvahte problems treated in

this paper we found that, in order to obtain very accurate

results, it was sufficient to take just a few (three to five)

FT’s of the mainly contributing harmonics of the basis

functions. Consequently, this resulted in substantial saving

in computation time compared to the original LSBRM.
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